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Land use classification requires a significant amount of labeled data, which may be difficult and time
consuming to obtain. On the other hand, without a sufficient number of training samples, conventional
classifiers are unable to produce satisfactory classification results. This paper aims to overcome this issue
by proposing a new model, TrCbrBoost, which uses old domain data to successfully train a classifier for
mapping the land use types of target domain when new labeled data are unavailable. TrCbrBoost adopts
a fuzzy CBR (Case Based Reasoning) model to estimate the land use probabilities for the target (new)
domain, which are subsequently used to estimate the classifier performance. Source (old) domain sam-
ples are used to train the classifiers of a revised TrAdaBoost algorithm in which the weight of each sample
is adjusted according to the classifier’s performance. This method is tested using time-series SPOT images
for land use classification. Our experimental results indicate that TrCbrBoost is more effective than
traditional classification models, provided that sufficient amount of old domain data is available. Under
these conditions, the proposed method is 9.19% more accurate.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Land use classification using remote sensing data can be based
on supervised learning methods, which typically require a set of
new field investigation samples for new study areas (Li et al.,
2014; Weng, 2012). However, collecting extensive amount of
labeled data is extremely expensive and time consuming, and in
some cases may be impossible to perform (Jansen and Gregorio,
2002; Robinove, 1981). In order to overcome the issue of the lack
of labeled data, numerous methods have been proposed, such as
unsupervised learning (Hegarat-Mascle et al., 1997) and semi-
supervised learning (Bennett and Demiriz, 1999; Chapelle et al.,
2002). While these approaches aim to reduce the quantity of train-
ing labeled data required, they are not as effective as the super-
vised methods. If the supervised methods are preferred, the cost
for collecting samples will be reduced if previously collected
labeled data can be reused to classify a new image. This strategy
assumes that old labeled data, even if obsolete, can provide useful
information for a new classification task. In many situations, old
data remain beneficial for training a new classifier (Dai et al.,
2007). While the process of evaluating and selecting useful old
data can be problematic, this issue can be overcome by using trans-
fer learning methods, which can be employed to transfer the
knowledge learned by the classification model from an old domain
to a new one.

Traditional classification methods assume that the training and
test data sets are drawn from the same distribution (Pan and Yang,
2010). Thus, any distribution changes require most classification
models to be rebuilt using newly collected training data. Transfer
learning methods that transfer knowledge learned by performing
one or more source tasks to the target task can be employed to
address this issue (Pan and Yang, 2010; Torrey and Shavlik, 2009).

Since 2005, transfer learning has become an increasingly impor-
tant topic in computer sciences (Rosenstein et al., 2005). According
to the extant literature, transfer learning is a powerful tool that can
be applied to many fields (Pan and Yang, 2010). Several simple and
effective algorithms have been employed to modify traditional
machine learning methods to suit various domain problems. For
example, Dai et al. (2007) proposed a boosting transfer learning
method (TrAdaBoost), which utilizes old data, in combination with
a small amount of new data, to train an ensemble classifier. More
recently, Pan et al. (2009) developed an unsupervised transfer
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learning method (Transfer Component Analysis or TCA) in which a
dimensionality reduction framework for transfer learning is used
to compensate for absence of target domain knowledge. Transfer
learning has been successfully applied in various fields to solve
numerous real-world classification or regression problems (Pan
and Yang, 2010). However, thus far, the use of transfer learning
techniques for land use classification has received limited atten-
tion from researchers and industry practitioners. One exception
is the work of Rajan et al. (2008), who examined the knowledge
transfer problem of hyperspectral data classification using an
active learning method. By adding new samples to existing classi-
fiers, in this study, the classifiers are corrected to fit the classifica-
tion of target images. Similarly, Matasci et al. (2011) used TCA to
solve the knowledge transfer problem for classifying hyperspectral
images. However, in both studies, only transfer learning algorithms
were employed to handle spectral properties, thus failing to con-
sider the spatio-temporal knowledge of the study areas.

This paper aims to overcome the aforementioned shortcomings
by proposing a novel transfer learning method named Transfer
Case Based Reasoning Boosting (TrCbrBoost). This method is based
on the integration of fuzzy case-based reasoning (fuzzy CBR) and
ensemble learning methods. The objective of this method is to
use the samples of multi-temporal images to train a classifier for
a target image. The multi-temporal data are analyzed to identity
both stable and unstable feature distributions. These features
are subsequently weighted in accordance with the divergence
between distributions pertaining to different domains, before
being employed in the fuzzy CBR model to produce land use prob-
ability maps. This allows the land use probability maps to be used
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Fig. 1. The sample density pertaining to the agricultural land
as a constraint to adjust the sample weight of each boosting itera-
tion. The increased number of boosting iterations can thus reduce
the distribution divergence between the training data and the tar-
get domain data. The final classification is obtained by majority
vote of the last half of boosting classifiers.

2. Methodology

Traditional classification methods usually classify land use
types by employing machine learning models that are applied to
the collected data (which can be labeled or unlabeled) typically
obtained from the same image, defined as domain D. In the same
vein, the classification task can be defined as task T. A domain D
consists of two components, namely, feature space X and marginal
probability distribution P(X), where X = {x1, . . .,xn} 2 X. For example,
if our task is the classification of SPOT images with four bands, X is
the space of all four bands and xi is the ith band of the image.

Given a specific domain D = {X, P(X)}, task T also consists of two
components, namely label space Y and predictive objective func-
tion f(�) (denoted by T = {Y, f(�)}). These components are derived
from the training data, where xi 2 X and yi 2 Y. Thus, function f(�)
can be used to predict land use type.

When the task is land use classification in a different scene (per-
taining to a different region or taken at a different time) remote
sensing images, this task can be considered as a different domain
task for several reasons. First, numerous studies have shown that
the atmospheric, surface variation, solar incident angle, and other
factors the effects of which cannot be predicted with certainty,
cause discrepancies in the spectral and texture data distributions
High Low
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of discrete scene images, even when these are obtained by the
same sensor (Benz et al., 2004; Wicks et al., 2002). Second, the
spectral and texture feature distributions of the same land use type
may be changed in different scene images due to instability in the
land use objects’ character. For example, the images taken in differ-
ent years may not have been acquired during the same time of the
crop growth cycles, or the soil moisture has changed across time (Li
and Yeh, 2004). Third, the geometric characteristic of the land par-
cel may be changed because of human intervention. For example,
road network development will cause landscape fragmentation,
whereby a large plot of land may be divided into several smaller
sections. These situations can result in discrepant land use classifi-
cation problems, which present different tasks and belong to
different domains.

The feature distributions for the same land use type can also vary
in different scene images. This is exemplified in Fig. 1 showing the
sample density of agricultural land use for three different scene
images. The x and y axes in Fig. 1a correspond to SPOT band 2 and
band 3, while the x and y axes in Fig. 1b denote length–width ratio
and shape index of the land use patch, respectively. When features
(in this case, the length–width ratio and shape index) have similar
distribution in different scenes, they are considered as stable fea-
tures. Thus, they can be used directly for training the new classifier
for a different scene image. In contrast, features that have discrepant
distributions (in this case, the SPOT band 2 and band 3) are deemed
unstable. However, as shown in Fig. 1, even the discrepant distribu-
tions of unstable feature from different scenes can have some over-
laps. Thus, capitalizing on this characteristic, the objective is to use
the old samples that are within this overlapping part to train the
classifier according to the proposed knowledge transfer method.

The knowledge transfer process involves a target domain image,
which needs to be classified, and several source domain images
that have already been classified. Moreover, both images must cor-
respond to the same region, and are typically taken at different
points in time. In the approach described in this paper, the labeled
data from the source domains and the unlabeled data from the tar-
get domain are required to classify the target domain image. We
propose a paradigm called TrCbrBoost to solve this problem.

In our method, remote sensing images are first segmented into
land parcels (objects) that can be used in the classification of land
Fig. 2. Calculation of land use pr
use types. This enables the features (e.g., spectral and texture infor-
mation) of each land parcel to be extracted for subsequent analysis.
It should be noted that the classification model cannot be trained
using old data directly. Moreover, the same cannot be directly
input into CBR model in order to retrieve an accurate land use
map. These limitations are imposed by feature distributions, which
are unstable in different domains for remote sensing imagery.
Therefore, the divergence of feature distribution is analyzed, allow-
ing the stable features to be assigned a greater weight than the
unstable features. As shown in Fig. 2, these weighted features serve
as input into a fuzzy CBR. In fact, the CBR method yields the prob-
abilities for the target domain land use. The land use probabilities
of target domain obtained in this manner are reliable because the
higher-weight (stable) features contribute most of the information
for the CBR retrieval process. These probabilities will also be used
as criterion in the following modified TrAdaBoost algorithm. In each
iteration of TrAdaBoost, the sample weights are adjusted according
to the base classifier performance. Thus, the distribution diver-
gence between the selected training data set and the target domain
data set is reduced with each successive iteration.

This proposed TrCbrBoost method consists of the following three
major components (Fig. 3):

(a) Feature selection and divergence analysis: In this study, four
types of features (spectral, texture, geometrical characteris-
tic and spatio-temporal relationship information) are
extracted from the remote sensing images. The feature
divergence between different source domains is analyzed
and measured. The features are then weighted (feature
weight v) according to the divergence.

(b) Case-based reasoning for land use probabilities: These features
will be imported into a CBR model. Features and labels per-
taining to source domains will be represented as a case
library. This enables the use of fuzzy k-NN method to predict
the land use possibilities of the target domain according to
the information stored in this case library.

(c) Boosting for transfer learning: The source domain features are
imported into a modified TrAdaBoost algorithm. TrAdaBoost
is an ensemble learning method that generates a diverse
ensemble of classifiers by manipulating the training data
obabilities using fuzzy CBR.
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Fig. 3. TrCbrBoost method flowchart.

136 Y. Liu, X. Li / ISPRS Journal of Photogrammetry and Remote Sensing 98 (2014) 133–144
provided to a ‘‘base’’ learning algorithm. Here, the land use
possibilities produced by CBR are used to evaluate each clas-
sifier’s performance. The weights (sample weight w) of the
source domain samples are adjusted in each iteration,
according to the error associated with this classifier. Thus,
with each subsequent iteration, the source domain samples
that are assigned greater weights should provide a better fit
to the target domain distribution. Finally, the classification
results are obtained from the model trained using these
higher-weight samples.

2.1. Feature selection and divergence analysis

2.1.1. Feature selection
Four types of features are selected for TrCbrBoost, namely spec-

tral, texture, geometrical characteristic and spatio-temporal rela-
tionship information. According to the extant literature, spectral
information is considered the most important feature in image
classification (Awrangjeb et al., 2010; Robinove, 1981). It can, how-
ever, exhibit a profound divergence among different domains
because of the uncertainties caused by atmospheric, solar incident
angle, and other effects on satellite data.

Texture is another important characteristic of remote sensing
data, as it is required by many classification or detection algo-
rithms (Awrangjeb et al., 2010, 2012). The texture distribution is
affected by similar issues to those pertaining to spectral features
and thus may also be different for different domains.

The third feature type involves the geometrical characteristics
of a land use object, such as perimeter, length–width ratio, and
other shape indices. Previous studies indicate that the shape infor-
mation can be employed effectively to improve classification per-
formance (Xia, 1996). However, for this process to be successful,
the shape distribution of different land segments should be similar,
even if these correspond to different regions or are taken at differ-
ent points in time. Here, it is worth noting some extreme cases,
such as habitat fragmentation, which will split up the continuous
land parcels.

The final feature type of interest for this work is spatio-
temporal relationship. The first law of geography states that fea-
tures or objects that are spatially closer are more highly related
(Tobler, 1965). Authors of numerous studies in this field reported
that land use change is affected by spatial relationship, such as
proximity factors, topological relationship, and surrounding land
use types (Du et al., 2012; Li and Yeh, 2000). Extant studies also
indicate presence of temporal correlations between land use
types at different periods (Lu and Weng, 2007). For example,
the probability that a plot of agricultural land located next to
main roads would be converted into built-up land is relatively
high. Conversely, probability of converting a built-up area into
forestlands is virtually zero.
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2.1.2. Distribution divergence analysis
In the analysis, the features should be weighted according to

the distribution divergence between the different domains, as this
allows the land use probabilities to be produced using the fuzzy
CBR model. Here, features characterized by lower divergence will
be assigned higher weights because, due to their greater stability
and thus greater value for classification.

The Kullback–Leibler divergence (KL) (Kullback and Leibler,
1951) is a well-known approach to measuring the distribution sim-
ilarity among different source domains. KL is a non-symmetric
measure of the closeness of the two probability distributions, P
and Q. The KL for a discrete distribution is defined as:

KLðPkQÞ ¼
X
x¼1

PðxÞ log
PðxÞ
QðxÞ ð1Þ

Thus, the closer the two distributions are to one another, the
smaller the KL. Moreover, as KL is non-symmetric, the divergence
DKL of distributions P and Q can be expressed as:

DKL ¼
1
2

KLðPkQÞ þ 1
2

KLðQkPÞ ð2Þ
2.2. CBR for land use probabilities

CBR is an artificial intelligence technique, which relies on
knowledge from previous experiences (e.g., old cases) to solve a
new problem (Du et al., 2002). This method has been widely
adopted with the aim to classify or predict land use. However, as
traditional CBR is an intra-domain analogy method (Aamodt and
Plaza, 1994), the knowledge on old cases and new problems must
be in the same domain and fit the same distribution. For this rea-
son, when the feature distribution is unstable, CBR is unreliable
(Li and Yeh, 2004). In order to avoid this defect, in this work, we
modify the traditional CBR method by weighting the features
according to their divergence, before using them as input into
the fuzzy CRB method to produce the map of land use probabilities
for the target domain.

2.2.1. Case representation
The case representation and of case library construction are the

main components of the CBR approach. The basic unit of a case is
the feature resulting from features selection and distribution
divergence analysis. A case consists of two components, namely
problem description (imported features, e.g., spectral, textual,
geometrical characteristic or other relationship information) and
solution (land use type).

A land use case related to the land parcel (object) can be defined
using the following expression:

Casei ¼ id; xi
1; x

i
2; . . . ; xi

n; yi
� �

ð3Þ

where xi
j is input feature j of land object i, and yi is the land use type

of the source domain object i.

2.2.2. Case retrieving algorithm
After establishing the case library, case retrieval is conducted to

estimate the probability of each land use type for each unknown
case. The retrieval is performed according to the similarity
between an unknown case (unlabeled target domain samples)
and known cases (labeled source domain samples) in the case
library.

The k-Nearest Neighbors (k-NN) algorithm is widely adopted for
CBR retrieval process. However, when a traditional k-NN is used,
the land use type of each new queried case is determined by the
cumulative similarity of its k nearest neighbors. Consequently,
the case will be assigned to the major land use type among these
neighbors (Dasarathy, 1990). CBR is used in this study to calculate
the probability of each land use of an unknown case. Thus, we
adopt the fuzzy k-NN algorithm proposed by Keller et al. (1985)
to calculate the probabilities. For the ith case, the probability of a
land use type is calculated using the following equation:

Uði; sÞ  
Xk

j

wij � dðs;gðjÞÞ
dðs;gðjÞÞ ¼ 1; if s ¼ gðjÞ
dðs;gðjÞÞ ¼ 0; if s – gðjÞ

� �
ð4Þ

where g(j) is a target function of known case (indicating its land use
type), k is the total number of nearest neighbors, s is the finite set of
target class values, and wij is the feature-distance weight propor-
tional to the inverse cumulative similarity:

wij ¼
1

SIMði; jÞ2
ð5Þ

The similarity (distance) between objects i and j is based on the
weighted Euclidian distance given below:

SIM i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1
vcn ain � ajn
� �2

r
ð6Þ

vcn ¼ 1�
KLcn �min

PN
n¼1KLcn

	 

max

PN
n¼1KLcn

	 

�min

PN
n¼1KLcn

	 
 ð7Þ

where v is the feature weight, a is the normalized feature value
(a 2 (0,1)), c is the land use class, and N is the total number of
features.

Once an unknown case is matched with k known cases, the
probabilities of the target domain land use are calculated using
Eq. (4). Here, the probability of a land use type for each case should
be normalized using the following equation:

Uði; sÞ ¼ Uði; sÞPS
j¼1Uði; jÞ

ð8Þ

After normalization, the sum of probabilities pertaining to all
land use types for each case is equal to 1. This enables the map
of land use probabilities of the target domain to be obtained based
on the previously discussed CBR reasoning. The next step is to
input these probability maps into a modified TrAdaBoost algorithm,
described in the following section.

2.3. Boosting for transfer learning

Boosting is a machine learning algorithm, which improves the
accuracy of a base learner (an ordinary classification algorithm,
such as Decision Tree or SVM) by adjusting the weights assigned
to the training data and allowing the classifier to learn accordingly
(Schapire, 1999). However, similar to most traditional learning
methods, boosting assumes that the training and the test data
follow the same distribution. Dai et al. (2007) attempted to
overcome the issue of different distributions by developing the
so-called TrAdaBoost algorithm, which is based on boosting. In our
study, a revised TrAdaBoost algorithm is proposed, and is applied
to the labeled data collected in source domains for domain adapta-
tion of land use classification.

Fig. 3c illustrates this transfer learning procedure. The detailed
methodology for TrAdaBoost is described below.

Step 1: Preparing the inputs.
In this step, the input data is prepared and the maximum num-

ber of iterations (R) for the TrAdaBoost algorithm defined. The
labeled data from the source domain provide the empirical infor-
mation for training the base learner. The maximum number of iter-
ations that defines the set (ensemble) of base learners is
determined according to the error rate iteration curve (Dai et al.,
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2007). Here, the improvement of prediction accuracy is assumed to
stabilize after a certain number of iterations.

The labeled data are usually obtained by classifying remote
sensing images or carrying out field investigations. The labeled
data set S ¼ xS

1; y
S
1

� �
; . . . ; xS

m; y
S
m

� �� �
(where m is the number of old

data points) is collected from the source domains. In each labeled
data set (sample), the x and y variables represent the site (object)
features at a location and its land use type, respectively. The unla-
beled data set T ¼ xT

1; x
T
2; . . . ; xT

n

� �
(where n is the number of new

data) is collected from the target domain.
Step 2: Initializing the weights for the labeled data.
The weights for the labeled data are initialized before calculat-

ing the weight decay factor. While it is assumed that all available
data can be used for training the classifier, the contribution of each
sample to the classification corresponds to the weight assigned to
it.

At the beginning, all weights are assigned equal value, defined
as follows:

w1
i ¼

1
m

for i ¼ 1; . . . ;m ð9Þ

Step 3: For r ¼ 1; . . . ;R, the base learner is run, while adjusting
the weight of each sample according to its classification
performance.

TrAdaBoost consists of a number of base learners that are gener-
ated using different combinations of labeled data. In each iteration,
a part of the labeled data set is selected to train a base learner
according to the sample weight.

First, the weight of each sample is normalized using the follow-
ing equation:

wr
i ¼ wr

i

Xm

i¼1

wr
i

,
ð10Þ

Only those samples whose weights are greater than a dynamic
threshold defined below will be selected to train a base learner fr.

ar ¼ mean wr
1; . . . ;wr

m

� �
� c; 0 6 c 6 1 ð11Þ

where c is a random variable and r is the current number of
iterations.

The fr is applied on the unlabeled data set T to obtain the clas-
sification land use results. This allows estimating the classifier
error of this base learner fr by comparing the previously obtained
classification output with the probability map, as shown below:

er ¼
Xn

i¼1

XY

s¼1

Uði; sÞ 1� d s; f r xT
i

� �� �� ��
n ð12Þ

where er is the model error of fr, U i; sð Þ is the probability of land use
type s for case i, d s; f r xT

i

� �� �
is a sign function, and d s; f r xT

i

� �� �
¼ 0

when s ¼ f r xT
i

� �
and d s; f r xT

i

� �� �
¼ 1 when s – f r xT

i

� �
.

The weight decay factors pertaining to s are defined as follows:

br ¼ er= 2e1 � erð Þ and b ¼ 1 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln m=R

q� �
ð13Þ

The weights are dynamically updated according to the follow-
ing equation:

wrþ1
i ¼ wr

i � b
�1
r if f r xS

i

� �
¼ yS

i

wr
i � b if f r xS

i

� �
– yS

i

(
ð14Þ

We can consider fr as a satisfactory classifier when the error
associated with it is less than that pertaining to the initial classifier
f1 (et < e1), as this implies that a correctly predicted source domain
sample is more similar to the target domain data. Therefore, the
weight of this sample will be increased (br�1 > 1), enhancing its
effect on the next iteration training. Irrespective of the accuracy
of fr, the weight of the incorrectly predicted source domain data
will be decreased evenly by multiplying their individual weights
by b (b 2 (0,1]). Thus, as the source domain data fit the target
domain distribution better, their weights will be greater after sev-
eral iterations. In addition, the data dissimilar to those in the target
domain will have lower weights. Thus, only the data assigned sig-
nificant weights will be used to assist the learner in training better
performing classifiers in the subsequent iteration.

Step 4: Generating the final classification result according to the
ensembles of base learners.

The weight adjusting strategy described above decreased the
classification error with each subsequent iteration. Consequently,
the classifiers built at later iterations will be better than their
precedents in terms of classification accuracy (Dai et al., 2007).
Finally, the classifiers built in the last R/2 iterations will be used
to obtain the final result, based on their respective errors. Here,
the following equation is used to estimate the land use type for
an unknown case:

arg maxy2Y

XR

r¼R=2

log
1
br

 !
ð15Þ
3. Case study

3.1. Study area and data set

The middle part of the Pearl River Delta in China (latitude
23�020N, longitude 113�320E) is chosen as the study area (Fig. 4).
This location is in the east estuary of the Pearl River, covering an
area of approximately 91 km2. Before the economic reform that
took place in 1978, a large part of the study area was dedicated
to agricultural activities. However, a significant amount of agricul-
tural land was converted to residential and industrial land use in
the last three decades.

The labeled data of the source domains were obtained from the
classification of SPOT-5 HRG images (10 m spatial resolution).
These images were acquired on November 25, 2004, October 29,
2006, and November 10, 2008 from Scene No. 285-304 found in
the China Remote Sensing Ground Station reference system. The
image of the target domain, which needs to be classified, was
acquired on November 09, 2010. Absolute atmospheric correction
of the images was not performed because simultaneously acquired
ground based spectral data or appropriate meteorological data was
lacking for the study area. Thus, the images were radiometrically
corrected instead, using the dark object subtract tool of ENVI.
These images were rectified to UTM zone 49, WGS1984 according
to ground-control points (Fig. 5). The root mean square errors were
less than 0.5 pixels for each image. These images were finally
transformed using the projection of Transverse Mercator.

To assess the classification accuracy of the target domain, a field
investigation in the study area was undertaken shortly before
acquiring the satellite image. The field measurement is based on
a Continuous Operational Reference System (CORS), which uses
local reference stations to provide up to centimeter-level accuracy
(Li et al., 2013). The high-precision handheld GPS obtains detailed
geometric information for each confirmed site of in situ data. As
shown in Fig. 5, we collected 380 in situ data points, as well as
recorded the coordinates of each in situ location and its related
land use type using CORS.

The classification of the source domain images was conducted
using an object-based supervised machine learning method. The
classification scheme comprised eight classes, namely agriculture,
lawn/grass, built-up area, transportation, bare land, orchards, fish-
pond, and water (Table 1). We first step is to identified the image



Fig. 4. Study area location in the Pearl River Delta.

Fig. 5. Field investigation sites and ground control points.

Table 1
Land use classification scheme.

Land use types Description

Built-up area (BU) Residential, commercial and industrial,
mixed urban or build-up land

Transportation (TL) Highway, road and railway
Bare land (BL) Sand, gravel and bare soil
Water (RI) Permanent open water, lake, river and wetland
Fishpond (FP) Freshwater pond with fish
Orchard (OC) Garden consisting of a small cultivated

wood and fruits area
Lawn/grass (LG) Golf courses, lawns and sod fields
Agricultural land (AL) Crop fields, pasture and fallow field
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objects, whereby image segmentation was implemented within
eCognition 8.7 software. The land use map was produced according
to the spectral signature, texture features, and geometric charac-
teristics of the labeled objects. Based on field checking, we
achieved 85�90% classification accuracy.

3.2. Feature selection and analysis

Eleven features were chosen and extracted from each object,
including the four major types (spectral, texture, geometrical and
spatial relationship) mentioned in Section 2.1:

� Four features are related to the spectral signature of SPOT,
including mean values of band 1 (B1), band 2 (B2), band 3 (B3),
and band 4 (B4). These features are the basic information
provided by satellite data and have been used in several previ-
ous studies (Gong et al., 1992).
� One feature is related to the texture, which refers to the mean

value of gray-level co-occurrence matrix (GLCM), extracted from
satellite data. Extant literature reports (Marceau et al., 1990;
Zhang et al., 2003) indicate that GLCM is helpful in improving
the accuracy of SPOT data classification.
� Three features are related to geometrical characteristics, which

include object area (A), length–width ratio (LWR), and shape
index (SI).
� Three features are related to spatial relationship and include

distance to the nearest existing main road (D1), distance to
the nearest water (D2), and distance to the nearest built-up land
(D3). These proximity factors significantly affect potential land
use change (Li and Yeh, 2002; Shrestha and Zinck, 2001).

The average KL-divergence of the distribution of these features
among the three source domains was calculated using Wolfram
Mathematica 8.0. As can be seen in Table 2, the KL value of the
spectral and texture features exceeds those of the shape and spatial
relationship features.



Table 2
Average KL-divergence of features.

B1 B2 B3 B4 GLCM LWR A SI D1 D2 D3

BL 0.55 1.01 0.06 0.59 0.42 0.00 0.01 0.00 1.16 0.32 0.03
RI 0.16 5.82 0.51 0.27 1.05 0.02 0.01 0.01 0.59 0.20 0.09
FP 0.41 4.84 0.46 0.53 1.09 0.10 0.14 0.01 0.83 0.15 0.04
OC 1.71 3.11 0.11 1.46 1.28 0.52 0.07 0.03 0.84 0.10 0.04
LG 0.69 3.86 0.25 0.47 1.09 0.03 0.02 0.01 0.70 0.12 0.17
TL 0.57 1.26 0.07 0.58 0.49 0.00 0.00 0.00 0.93 0.16 0.03
BU 0.85 1.71 0.13 0.66 0.76 0.03 0.02 0.01 0.42 0.08 0.02
AL 1.19 2.53 0.61 1.38 2.49 0.00 0.01 0.00 1.63 0.07 0.00

1 0 0 4 82
km

(a)BU (b)TL (c)BL

(e)FP (f)OC

(d)RI

(g)LG (h)AL

Fig. 6. Land use probability maps produced by fuzzy CBR.

Table 3
Average KL-divergence between training and reference data sets.

Iteration 1 5 20 100 Divergence reduction (%)

B1 1.47 1.41 1.23 1.06 27.89
B2 0.26 0.24 0.20 0.18 30.77
B3 0.51 0.42 0.31 0.23 54.90
B4 1.12 1.04 0.96 0.86 23.21
GLCM 1.44 1.26 1.09 1.05 27.08
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3.3. CRB for land use probabilities

The features described above were imported into the fuzzy CBR
model, which is implemented using Matlab 7.0 fuzzy logic tool box,
to produce land use probabilities of the target domain. In addition
to these 11 features, the CBR method also requires the temporal
relationship information. In this work, three periods of land use
are treated as three source domains. The time intervals between
adjacent time domains (including source and target domain) are
nearly equal (2 years). The land use type of the former period
(LUformer) is considered as a feature of this period. For example,
LUformer of the target domain (year 2010) is represented by the land
use type information pertaining to 2008. Based on Eq. (3), a case
can be represented using the following expression:

Case ¼ id;B1;B2;B3;B4;GLCM;A; LWR; SI;D1;D2;D3; LUformer; LU
� �

ð16Þ

As LUformer is a discrete value, distance calculation is obtained
using the following expression:
LUunknown
former � LUknown

former ¼
0 if LUunknown

former ¼ LUknown
former or LUknown

1 if LUunknown
former – LUknown

former or LUknown

(
ð17Þ

where LUunknown
former is the former land use type of the unknown case,

LUknown
former is the former land use type of the known case, and LUknown

is the current land use type of the known case.
A case library comprising 31,921 cases of source domains was

established by using the classified remote sensing images. Similar
old cases were retrieved using the k-NN method for the 16,933
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Fig. 7. Density of training samples for the built-up area category in band 2 and band 3.

Table 4
Error matrix of the SVMDS for land use classification.

Classified data (pixel) Reference data UA (%)

BL RI FP OC LG TL BU AL

BL 300 0 0 0 0 2 5 0 97.72
RI 0 184 6 0 0 3 0 0 95.34
FP 1 6 86 0 0 1 1 6 85.15
OC 1 0 0 22 86 2 0 0 19.82
LG 3 0 0 8 215 1 1 0 94.30
TL 10 5 0 0 8 232 268 5 43.94
BU 26 1 0 1 2 64 258 8 71.67
AL 2 5 69 0 3 8 2 497 84.81

Total 343 201 161 31 314 313 535 516

PA (%) 87.46 91.54 53.42 70.97 68.47 74.12 48.22 96.32

UA = the user’s accuracy, PA = the producer’s accuracy.
Overall classification accuracy = 74.32%.
Overall kappa statistics = 0.69.
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cases of the target domain. The k of k-NN was set to 10 and the
probability of each unknown case was calculated using Eq. (4). This
enables generating the land use probability of each land use type
(as shown in Fig. 6). Finally, the probability map was used to assess
the performance of each boosting classifier.
3.4. Transfer boosting for land use classification

In this study, Support Vector Machines (SVM) were used to
develop the basis Learner for TrCbrBoost. We used Libsvm (Chang
and Lin, 2011), for which the source code is available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm, while we implemented the
SVM classifier using RBF kernel. We employed a 10-fold cross-
validation strategy to select the two SVM free parameters (the
penalization parameter and variance of the considered RBF ker-
nels). The number of iterations R was set to 100. As noted above,
31,921 labeled data pertaining to the source domains and 16,933
unlabeled data representing the target domain with 11 features
and the temporal relationship were selected and imported into
the boosting algorithm. The revised TrAdaBoost algorithm was
implemented using Matlab 7.0. Interested readers can find the
complementary material (Matlab source code and demos) of
TrAdaBoost algorithm at https://github.com/Jiaolong/Boosting_DA.
3.4.1. Domain divergence changing
To determine the TrCbrBoost efficiency in selecting useful old

data (source domain data), in each iteration, we calculated the
KL-divergence between the reference data and the selected source

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/Jiaolong/Boosting_DA


Table 5
Error matrix of the k-NN for land use classification.

Classified data (pixel) Reference data UA (%)

BL RI FP OC LG TL BU AL

BL 298 0 0 1 1 23 8 6 88.43
RI 0 190 7 0 0 5 0 0 94.06
FP 0 5 24 0 0 0 0 9 63.16
OC 1 0 5 19 36 1 0 0 30.65
LG 1 0 0 10 273 24 0 6 86.94
TL 5 3 0 1 2 238 128 2 62.80
BU 7 0 0 0 1 22 399 11 90.68
AL 31 3 125 0 1 0 0 482 75.08

Total 343 201 161 31 314 313 535 516
PA (%) 86.88 94.53 14.91 61.29 86.94 76.04 74.58 93.41

UA = the user’s accuracy, PA = the producer’s accuracy.
Overall classification accuracy = 79.66%.
Overall kappa statistics = 0.75.

Table 6
Error matrix of the TrCbrBoost for land use classification.

Classified data (pixel) Reference data UA (%)

BL RI FP OC LG TL BU AL

BL 268 0 0 0 3 5 8 4 93.06
RI 0 185 5 0 3 3 2 4 91.58
FP 1 1 111 0 2 5 2 8 85.38
OC 0 0 1 25 6 2 0 1 71.43
LG 2 1 0 4 251 3 3 3 94.01
TL 12 2 3 1 16 225 32 11 74.50
BU 50 4 13 1 24 53 480 14 75.12
AL 10 8 28 0 9 17 8 471 85.48

Total 343 201 161 31 314 313 535 516
PA (%) 78.13 92.04 68.94 80.65 79.94 71.88 89.72 91.28

UA = the user’s accuracy, PA = the producer’s accuracy.
Overall classification accuracy = 83.51%.
Overall kappa statistics = 0.80.

142 Y. Liu, X. Li / ISPRS Journal of Photogrammetry and Remote Sensing 98 (2014) 133–144
domain data. We used Eqs. (1) and (2) to measure the divergence of
each learner’s training data from the reference data. As can be seen
in Table 3, the divergence is significantly reduced (by more than
20%).

Fig. 7 shows the examples of distribution variation found in the
training data for band 2 and band 3. As can be seen, the difference
between the training samples and reference data is particularly
pronounced in the high-density region (marked in red1 in Fig. 7)
at the start of the iteration (Fig. 7(a): R = 1). The high-density region
of training samples resides in approximately 0.35–0.45 of the x axis
and 0.37–0.48 of the y axis, whereas the corresponding values for the
same region of the reference data are 0.25–0.37 and 0.18–0.32,
respectively. However, as expected, the divergence decreases as
the number of iterations increases. The source domain data that
are less similar to that of the target domain will be eliminated by this
procedure, due to their negative effect on the training of good
classifiers. At the end of the iteration, the high-density region of
the training samples was fitted to approximately 0.25–0.35 of the
x axis and 0.22–0.36 of the y axis (Fig. 7(d): R = 100). Compared to
the initial values, this result is closer to the high-density region of
the reference data.
3.4.2. Accuracy assessment
In order to evaluate its performance in terms of land use

classification accuracy, the TrCbrBoost model was compared to
1 For interpretation of color in Fig. 7, the reader is referred to the web version of
this article.
three traditional models. These are SVM trained with source
domain labeled data (SVMDS), fuzzy k-NN model trained with
source domain labeled data (mentioned in Section 2.2.2), and
SVM trained with the target domain labeled data (SVMDT). Prior
to commencing the comparison, the 11 features of labeled data
were imported into the SVM to train the classification model.

For assessing the accuracy of classification, 2414 reference data
points were used, including 535 built-up pixels, 313 transportation
pixels, 343 bare land pixels, 201 water pixels, 161 fishpond pixels,
31 orchard pixels, 314 lawn pixels, and 516 agricultural land
pixels. In Tables 4–7, the confusion matrices representing the clas-
sification quality of each model are given, while the land use clas-
sification map produced by each model is given in Fig. 8(a)–(d). For
the SVMDT, about half of the reference data points were used as
training data, while the remaining set was employed in the accu-
racy assessment.

At 74.32%, the accuracy of the SVMDS, which is trained with
source domain data, was the lowest (Fig. 8(a) and Table 4). The
large distribution divergence of spectral and textual features
causes SVM to misclassify land use types with similar spectral
and textual information, such as built-up area and transportation,
orchard and lawn.

At 79.71%, the accuracy of the k-NN model is somewhat better
than that of the SVM, as shown in Fig. 8(b) and Table 5. This is likely
due to the fact that, while both models employ the source domain
labeled data to train the classifier, the temporal land use informa-
tion is used only in the k-NN model.

Compared to the above, TrCbrBoost is a superior approach, with
an overall accuracy of 83.51% (Fig. 8(c)). As shown in Table 6,



Table 7
Error matrix of the SVMDT for land use classification.

Classified data (pixel) Reference data UA (%)

BL RI FP OC LG TL BU AL

BL 178 0 0 0 1 8 1 1 94.18
RI 0 107 0 0 0 1 0 1 98.17
FP 0 0 69 0 0 2 0 2 94.52
OC 0 0 0 16 2 2 0 1 76.19
LG 0 0 0 2 164 2 1 2 95.91
TL 4 2 2 0 2 100 19 0 77.52
BU 6 1 5 0 5 59 273 0 78.22
AL 2 2 14 0 1 2 0 277 92.95

Total 190 112 90 18 175 175 294 284
PA (%) 93.68 95.54 76.67 88.89 93.71 56.82 92.86 97.54

UA = the user’s accuracy, PA = the producer’s accuracy.
Overall classification accuracy = 88.49%.
Overall kappa statistics = 0.87.

Fig. 8. Land use maps produced by classification approaches. (a) SVM model train with source domain data, overall accuracy = 74.32%; (b) Fuzzy k-NN model, overall
accuracy = 79.66%; (c) TrCbrBoost, overall accuracy = 83.51%; and (d) SVM model train with target domain data, overall accuracy = 88.49%.
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because of their similar spatial relationship, the specific accuracies
pertaining to fishpond (FP), lawn (LG), and transportation (TL) clas-
sification are lower, compared to those achieved for other land use
types. The similar spatial relationship information directly influ-
enced the land use probabilities produced by CBR.

The results shown above clearly demonstrate that the SVM
model can produce satisfactory results when sufficient quantity
of good quality training data is available. Fig. 8(d) and Table 7 per-
tain to the classification output of SVMDT, which is trained using the
target domain labeled data. Predictably, this SVM model produces
the highest accuracy (88.49%), as shown in Fig. 8(d). As this model
is trained with the target domain data, its performance is better
than the model is trained with the source domain data and
improved upon by TrCbrBoost.

Fig. 8(a1), (b1), (c1) and (d1) depicts the four models’ classifica-
tion results pertaining to the same site. It should be noted that
some of the farmland owners in Pearl River Delta enjoy a special
agricultural production arrangement, allowing them to periodi-
cally designate their land as either fishpond or agricultural plot.
Thus, for the k-NN model, which uses the temporal land use
information and assigns a low weight to the spectral feature, it is
easy to mistakenly classify the fishpond to the agricultural land
category (as shown in Tables 4–7, the fishpond accuracy of k-NN
is the lowest of the four models). The TrCbrBoost model overcomes
this problem by using the domain adaptive strategy to find the use-
ful old labeled data with which to train the classifier. If the training
samples are chosen so that they fit the distribution of the target
domain data well, it is easy to distinguish fishpond and agricultural
land by using spectral and texture information. As a result, the
TrCbrBoost and SVMDT produce satisfactory results when detecting
the fishpond land use type (Fig. 8(c1) and (d1)).

Fig. 8(a2), (b2), (c2) and (d2) shows the four models’ classifica-
tion results obtained at another site. As can be seen, in some cases,
lawn is mistakenly classified as orchard in Fig. 8(a1), because the
spectral and texture distribution of these two land use types is
similar. Thus, these unstable distribution features have negative
effect on the SVM model training success. If target domain labeled
data is used as training samples instead, SVM model can classify
these two land use types very well, as shown in Fig. 8(d2). On
the other hand, the k-NN model can correctly classify the lawn
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(Fig. 8(b2)), as it relies on the source domains temporal land use
information, in which is classified as such. Similarly, as the useful
old data are selected by the domain adaptive strategy in the
TrCbrBoost, it too can classify the lawn with less errors (Fig. 8(c2)).

4. Conclusions

This paper presents a new approach to using knowledge trans-
fer, called TrCbrBoost, as the aim is to improve classification perfor-
mance. As we have shown, this method is effective in the domain
adapting of land use classification by using various types of source
(old) training data. Its main advantage is that it does not require
any newly collected labeled data. This can significantly save the
labor costs because collecting labeled data is very expensive and
time consuming and may be impossible in some cases.

TrCbrBoost adopts three techniques to achieve the domain
adapting purpose. First, the features pertaining the labeled data
are extracted, before being evaluated using KL-divergence to iden-
tify the stable and unstable ones. Second, a fuzzy CBR is further
applied to these features. Here, these features are weighted accord-
ing to their divergences to generate land use probability maps of
the target domain. Third, by using the maps of land use probabili-
ties to assess the quality of old data, the TrAdaBoost technique is
used to allow the distribution of higher-weight training samples
to converge toward that of the target domain data. Finally, half
of the classifiers remaining after this process is used to create the
majority votes for obtaining the classification result.

In order to assess its performance, the proposed TrCbrBoost was
applied to the land use classification of the middle part of the Pearl
River Delta in China. For this purpose, 11 features were derived
from the object-based analysis. The labeled data of source domains
and the probability maps, which were generated by CBR, were
imported into the boosting learning model. The aim of boosting
is to reduce the distribution divergence between the source
domain (training) data and the target domain data. Thus, the distri-
bution of the selected training data set can approach that of the
target domain data with each new iteration. The results reported
in this work indicate that the divergence between these two distri-
butions is reduced by more than 20%. Finally, the TrCbrBoost clas-
sification performance was compared to that of three models
widely used in the field. The experimental results indicated that
the proposed model has significant advantages when the target
domain labeled data are not available.

The experiments conducted in this study revealed that almost
half of the features in the data sets used were unstable. However,
even in such cases, there were sufficient overlapping parts that
could provide the crucial information for the classification. This
fact is important for the use of our proposed knowledge transfer
method. However, it should be noted that this method would fail
if most of the features have high divergence across domains (no
overlapping of the feature distributions). Another limitation of this
method is that the TrCbrBoost has low computing efficiency
because it is based on an ensemble method. Rectifying this issue
is the subject of our future work.
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